Страница:
<< 160 161 162 163
164 165 166 >> [Всего задач: 1957]
На плоскости
P стоит прямой круговой конус. Радиус основания
r, высота —
h. На расстоянии
H от плоскости и
l от высоты конуса находится источник
света. Какую часть окружности радиуса
R, лежащей в плоскости
P и
концентрической с окружностью, лежащей в основании конуса, осветит этот
источник?
Какое наименьшее число точек можно выбрать на окружности длины 1956 так,
чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии
1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?
На окружности длины 15 выбрано
n точек, так что для каждой имеется ровно
одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2
(расстояние измеряется по окружности). Докажите, что
n делится на 10.
|
|
Сложность: 3+ Классы: 10,11
|
Даны положительные числа
h,
s1,
s2 и расположенный в пространстве
треугольник
ABC. Сколькими способами можно выбрать точку
D так, чтобы
в тетраэдре
ABCD высота, опущенная из вершины
D, была равна
h, а площади
граней
ACD и
BCD соответственно
s1 и
s2 (исследовать все возможные
случаи)?
Дана замкнутая пространственная ломаная. Некоторая плоскость пересекает все её
звенья:
A1A2 в точке
B1,
A2A3 — в точке
B2, ...,
AnA1
-- в точке
Bn. Докажите, что
Страница:
<< 160 161 162 163
164 165 166 >> [Всего задач: 1957]