Страница:
<< 118 119 120 121
122 123 124 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 8,9,10
|
Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью
освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа
освещает круг радиуса, равного высоте, на которой она висит?
Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,
|
|
Сложность: 3+ Классы: 9,10
|
На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы
штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это
можно сделать?
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.
Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.
Страница:
<< 118 119 120 121
122 123 124 >> [Всего задач: 1957]