ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?
Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.
Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13. Дано трёхзначное число, у которого первая и последняя цифра одинаковые. Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.
Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.
Даны точки A(- 2;2), B(- 2; - 2) и C(6;6). Составьте уравнения прямых, на которых лежат стороны треугольника ABC.
У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать? Даны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный. На сторонах AD и CD параллелограмма ABCD расположены точки M и N соответственно, причём AM : MD = 2 : 7, CN : ND = 3 : 5. Прямые CM и BN пересекаются в точке O. Найдите отношения ON : OB и OC : OM. Найти сумму 1 + 2002 + 20022 + ... + 2002n. Доказать, что число n5 – 5n³ + 4n делится на 120 при любом натуральном n. На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке? |
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 7526]
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.
Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.
В треугольнике ABC угол C – прямой. Из центра C
радиусом AC описана дуга, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке