ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 107761

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Прислать комментарий     Решение

Задача 107763

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9,10

D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC.

Прислать комментарий     Решение

Задача 108197

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы углов A и C. Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.

Прислать комментарий     Решение

Задача 107755

Темы:   [ Неравенство треугольника (прочее) ]
[ Теория игр (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 7,8,9

У Коли есть отрезок длины k, а у Лёвы — отрезок длины l. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения k/l, может обеспечить себе победу, и как ему следует играть?
Прислать комментарий     Решение


Задача 107766

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Усеченная пирамида ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 3+
Классы: 10,11

Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .