ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать? Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.
Докажите, что sin Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны? Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех. Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб. Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) . Решите уравнение: Угол, образованный лучами y = x и y = 2x при x ≥ 0, высекает на параболе y = x² + px + q две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой. Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?
В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте. Окружность вписана в равнобедренную трапецию ABCD с основаниями BC = a и AD = b. Точка H – проекция вершины B на AD, точка P – проекция точки H на AB, точка F лежит на отрезке BH, причём FH = AH. Найдите AB, BH, BP, DF и расположите найденные величины по возрастанию. Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/ |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
В треугольнике ABC (AB > BC) проведены медиана BM и биссектриса BL. Прямая, проходящая через точку M параллельно AB, пересекает BL в точке D, а прямая, проходящая через L параллельно BC, пересекает BM в точке E. Докажите, что прямые ED и BL перпендикулярны.
Ювелир сделал незамкнутую цепочку из N>3 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число
Прямые, параллельные оси Ox, пересекают график функции y = ax³ + bx² + cx + d: первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.
Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке