ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет? Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на n частей (на рисунке n = 5). Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?
Можно ли расставить охрану вокруг точечного объекта так, чтобы ни
к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой
стоит неподвижно и видит на 100 м строго вперёд.)
Натуральное число N в 999...99 (k девяток) раз
больше суммы своиx цифр. Укажите все возможные значения k и для каждого
из них приведите пример такого числа. Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей? У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить? Найдите все такие функции f(x), что f(2x + 1) = 4x² + 14x + 7. В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе? Андрей и Борис играют в следующую игру. Изначально на числовой
прямой в точке p стоит робот. Сначала Андрей говорит расстояние,
на которое должен сместиться робот. Потом Борис выбирает
направление, в котором робот смещается на это расстояние, и т.д. При каких p Андрей может добиться того, что за конечное
число ходов робот попадет в одну из точек 0 или 1 вне
зависимости от действий Бориса?
|
Страница: 1 2 >> [Всего задач: 6]
Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?
Андрей и Борис играют в следующую игру. Изначально на числовой
прямой в точке p стоит робот. Сначала Андрей говорит расстояние,
на которое должен сместиться робот. Потом Борис выбирает
направление, в котором робот смещается на это расстояние, и т.д. При каких p Андрей может добиться того, что за конечное
число ходов робот попадет в одну из точек 0 или 1 вне
зависимости от действий Бориса?
Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?
k ≥ 6 – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в k целых точках значения среди чисел от 1 до k – 1, то эти значения равны.
Высоты AA' и CC' остроугольного треугольника ABC
пересекаются в точке H. Точка B0 – середина стороны AC.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке