Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Вниз   Решение


Автор: Антонов М.

Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на n частей (на рисунке  n = 5).

Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

ВверхВниз   Решение


Натуральное число N в 999...99 (k девяток) раз больше суммы своиx цифр. Укажите все возможные значения k и для каждого из них приведите пример такого числа.

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Найдите все такие функции  f(x), что  f(2x + 1) = 4x² + 14x + 7.

ВверхВниз   Решение


Автор: Вялый М.Н.

В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?

ВверхВниз   Решение


Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке p стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких p Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111339  (#1)

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 6,8,9,10

Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

Прислать комментарий     Решение

Задача 111340  (#2)

Темы:   [ Двоичная система счисления ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 9,10,11

Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке p стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких p Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?
Прислать комментарий     Решение


Задача 111341  (#3)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?
Прислать комментарий     Решение


Задача 111342  (#4)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Безу. Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5-
Классы: 10,11

 k ≥ 6  – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в k целых точках значения среди чисел от 1 до  k – 1,  то эти значения равны.

Прислать комментарий     Решение

Задача 111343  (#5)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Высоты AA' и CC' остроугольного треугольника ABC пересекаются в точке H. Точка B0 – середина стороны AC.
Докажите, что точка пересечения прямых, симметричных BB0 и HB0 относительно биссектрис углов B и AHC соответственно, лежит на прямой A'C'.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .