Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

Вниз   Решение


Действительные числа x и y таковы, что для любых различных простых нечётных p и q число  xp + yq   рационально.
Докажите, что x и y – рациональные числа.

ВверхВниз   Решение


С ненулевым числом разрешается проделывать следующие операции: x , x . Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?

ВверхВниз   Решение


Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.

ВверхВниз   Решение


Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

ВверхВниз   Решение


В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

ВверхВниз   Решение


Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

ВверхВниз   Решение


Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.

ВверхВниз   Решение


Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

ВверхВниз   Решение


В бесконечной последовательности  a1, a2, a3, ... число a1 равно 1, а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то  an = an–1 + 1,  если же остаток равен 3, то  an = an–1 – 1.  Докажите, что в этой последовательности
  а) число 1 встречается бесконечно много раз;
  б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)

ВверхВниз   Решение


Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.


ВверхВниз   Решение


Во сколько раз увеличится площадь поверхности шара, если радиус шара увеличить в 2 раза?


ВверхВниз   Решение


Объем куба равен 8. Найдите площадь его поверхности.


ВверхВниз   Решение


Объем параллелепипеда ABCDA1B1C1D1  равен 9. Найдите объем треугольной пирамиды ABCA1 .


ВверхВниз   Решение


Около шара описан цилиндр, площадь поверхности которого равна 18. Найдите площадь поверхности шара.


ВверхВниз   Решение


Прямоугольный параллелепипед описан около сферы радиуса 1 . Найдите его объем.


ВверхВниз   Решение


 Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π .


ВверхВниз   Решение


Площадь поверхности куба равна 18. Найдите его диагональ.


ВверхВниз   Решение


Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.


ВверхВниз   Решение


Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10.


ВверхВниз   Решение


Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.

ВверхВниз   Решение


У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?

ВверхВниз   Решение


а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?

ВверхВниз   Решение


На плоскости даны две концентрические окружности с центром в точке A . Пусть B  — произвольная точка одной из этих окружностей, C  — другой. Для каждого треугольника ABC рассмотрим две окружности одинакового радиуса, касающиеся друг друга в точке K , причем одна окружность касается прямой AB в точке B , а другая — прямой AC в точке C . Найдите ГМТ K .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 111711  (#6)

Темы:   [ Концентрические окружности ]
[ Касающиеся окружности ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4+
Классы: 9,10

На плоскости даны две концентрические окружности с центром в точке A . Пусть B  — произвольная точка одной из этих окружностей, C  — другой. Для каждого треугольника ABC рассмотрим две окружности одинакового радиуса, касающиеся друг друга в точке K , причем одна окружность касается прямой AB в точке B , а другая — прямой AC в точке C . Найдите ГМТ K .
Прислать комментарий     Решение


Задача 111712  (#7)

Темы:   [ Пересекающиеся окружности ]
[ Биссектриса делит дугу пополам ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что  AB = PQ.

Прислать комментарий     Решение

Задача 111713  (#8)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 8,9,10

а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?
Прислать комментарий     Решение


Задача 111714  (#9)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Свойства симметрий и осей симметрии ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
Сложность: 4+
Классы: 9,10

Прямые, симметричные диагонали BD четырёхугольника ABCD относительно биссектрис углов B и D, проходят через середину диагонали AC.
Докажите, что прямые, симметричные диагонали AC относительно биссектрис углов A и C, проходят через середину диагонали BD.

Прислать комментарий     Решение

Задача 111715  (#10)

Темы:   [ Описанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .