Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

α, β и γ - углы треугольника ABC. Докажите, что
а)  sin2$ \alpha$ + sin2$ \beta$ + sin2$ \gamma$ = (p2 - r2 - 4rR)/2R2.
б)  4R2cos$ \alpha$cos$ \beta$cos$ \gamma$ = p2 - (2R + r)2.

Вниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
а)  cos($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = (p - a)/4R;
б)  sin($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = ra/4R.

ВверхВниз   Решение


а)  ctg($ \alpha$/2) + ctg($ \beta$/2) + ctg($ \gamma$/2) $ \geq$ 3$ \sqrt{3}$.
б) Для остроугольного треугольника

tg$\displaystyle \alpha$ + tg$\displaystyle \beta$ + tg$\displaystyle \gamma$ $\displaystyle \geq$ 3$\displaystyle \sqrt{3}$.


ВверхВниз   Решение


а)  sin$ \alpha$sin$ \beta$sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/8;
б)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/8.

ВверхВниз   Решение


Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

ВверхВниз   Решение


Докажите, что любое движение второго рода является скользящей симметрией.

ВверхВниз   Решение


Докажите, что любое движение первого рода является поворотом или параллельным переносом.

ВверхВниз   Решение


Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.

ВверхВниз   Решение


Даны окружность S, точка P, расположенная вне S, и прямая l, проходящая через P и пересекающая окружность в точках A и B. Точку пересечения касательных к окружности в точках A и B обозначим через K.
а) Рассмотрим всевозможные прямые, проходящие через P и пересекающие AK и BK в точках M и N. Докажите, что геометрическим местом точек пересечения отличных от AK и BK касательных к S, проведенных из точек M и N, является некоторая прямая, проходящая через K, из которой выкинуто ее пересечение с внутренностью S.
б) Будем на окружности разными способами выбирать точку R и проводить прямую, соединяющую отличные от R точки пересечения прямых RK и RP с S. Докажите, что все полученные прямые проходят через одну точку, и эта точка лежит на l.

ВверхВниз   Решение


Докажите, что

\begin{multline*}
h_a=2(p-a)\cos(\beta /2)\cos(\gamma /2)/\cos(\alpha /2)=\\
=2(p-b)\sin(\beta /2)\cos(\gamma /2)/\sin(\alpha /2).
\end{multline*}


ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
tg$ \alpha$ + tg$ \beta$ + tg$ \gamma$ = tg$ \alpha$tg$ \beta$tg$ \gamma$.

ВверхВниз   Решение


Доказать, что  a2n+1 + (a – 1)n+2  делится на  a² – a + 1  (a – целое, n – натуральное).

ВверхВниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  sin($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = r/4R;
б)  tg($ \alpha$/2)tg($ \beta$/2)tg($ \gamma$/2) = r/p;
в)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = p/4R.

ВверхВниз   Решение


a1 = a2 = 1,  an+1 = anan–1 + 1.  Доказать, что an не делится на 4.

ВверхВниз   Решение


Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде

n = a1 . 1! + a2 . 2! + a3 . 3! +...,

где 0 $ \leqslant$ a1 $ \leqslant$ 1, 0 $ \leqslant$ a2 $ \leqslant$ 2, 0 $ \leqslant$ a3 $ \leqslant$ 3...

ВверхВниз   Решение


Даны окружность S, прямая l, точка M, лежащая на S и не лежащая на l, и точка O, не лежащая на S. Рассмотрим преобразование P прямой l, являющееся композицией проектирования l на S из M, S на себя из O и S на l из M, т. е. P(A) — пересечение прямых l и MC, где C — отличная от B точка пересечения S с прямой OB, а B — отличная от A точка пересечения S с прямой MA. Докажите, что преобразование P проективно.

ВверхВниз   Решение


В этой задаче мы будем рассматривать наборы из n прямых общего положения, т. е. наборы, в которых никакие две прямые не параллельны и никакие три не проходят через одну точку.
Набору из двух прямых общего положения поставим в соответствие точку — их точку пересечения, а набору из трех прямых общего положения — окружность, проходящую через три точки пересечения. Если l1, l2, l3, l4 — четыре прямые общего положения, то четыре окружности Si, соответствующие четырем тройкам прямых, получаемых отбрасыванием прямой li, проходят через одну точку (см. задачу 2.83, а)), которую мы и поставим в соответствие четверке прямых. Эту конструкцию можно продолжить.
а) Пусть li, i = 1,..., 5 — пять прямых общего положения. Докажите, что пять точек Ai, соответствующих четверкам прямых, получаемых отбрасыванием прямой li, лежат на одной окружности.
б) Докажите, что эту цепочку можно продолжить, поставив в соответствие каждому набору из n прямых общего положения точку при четном n и окружность при нечетном n, так, что n окружностей (точек), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности).

ВверхВниз   Решение


Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем  1 + .

ВверхВниз   Решение


Доказать, что  n² + 5n + 16  не делится на 169 ни при каком натуральном n.

ВверхВниз   Решение


Докажите, что  11n+2 + 122n+1  делится на 133 при любом натуральном n.

ВверхВниз   Решение


Докажите, что длину биссектрисы la можно вычислить по следующим формулам:
а)  la = $ \sqrt{4p(p-a)bc/(b+c)^2}$;
б)  la = 2bc cos($ \alpha$/2)/(b + c);
в)  la = 2R sin$ \beta$sin$ \gamma$/cos(($ \beta$ - $ \gamma$)/2);
г)  la = 4p sin($ \beta$/2)sin($ \gamma$/2)/(sin$ \beta$ + sin$ \gamma$).

ВверхВниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ = (a2 + b2 + c2)/4S;
б)  a2ctg$ \alpha$ + b2ctg$ \beta$ + c2ctg$ \gamma$ = 4S.

ВверхВниз   Решение


Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что  A2B2 || AB  и прямые AA2, BB2 и CC2 пересекаются в одной точке.

ВверхВниз   Решение


Игра начинается с числа 2. За ход разрешается прибавить к имеющемуся числу любое натуральное число, меньшее его. Выигрывает тот, кто получит 1000.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



Задача 30468  (#036)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

Игра начинается с числа 1. За ход разрешается умножить имеющееся число на любое натуральное число от 2 до 9. Выигрывает тот, кто первым получит число, большее 1000.

Прислать комментарий     Решение


Задача 30469  (#037)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

Игра начинается с числа 2. За ход разрешается прибавить к имеющемуся числу любое натуральное число, меньшее его. Выигрывает тот, кто получит 1000.

Прислать комментарий     Решение


Задача 30470  (#038)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 9,10

Игра начинается с числа 1000. За ход разрешается вычесть из имеющегося числа любое, не превосходящее его, натуральное число, являющееся степенью двойки (1 = 20). Выигрывает тот, кто получит ноль.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .