ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Равносторонний треугольник ABC со стороной 3 вписан
в окружность. Точка D лежит на окружности, причём
хорда AD равна 2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Первая окружность с центром в точке A касается сторон угла KOL в точках K и L.
Вторая окружность с центром в точке B касается отрезка OK, луча LK
и продолжения стороны угла OL за точку O. Известно, что отношение радиуса
первой окружности к радиусу второй окружности равно
В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой. Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел предвтавляет собой точный квадрат. В точках A и B пересечения двух окружностей касательные к этим окружностям взаимно перпендикулярны. Пусть M — произвольная точка на одной из окружностей, лежащая внутри другой окружности. Продолжим отрезки AM и BM до пересечения в точках X и Y с окружностью, содержащей M внутри себя. Докажите, что XY — диаметр этой окружности. С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом. Пусть A0 – середина стороны BC треугольника ABC , а A' – точка касания с этой стороной вписанной окружности. Построим окружность с центром в точке A0 и проходящую через A' . На других сторонах построим аналогичные окружности. Докажите, что если окружность касается описанной окружности в точке дуги BC , не содержащей A , то ещё одна из построенных окружностей касается описанной. Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей. Диагонали четырёхугольника $ABCD$ пересекаются в точке $P$, причём $S^2_{\Delta ABP} + S^2_{\Delta CDP} = S^2_{\Delta BCP} + S^2_{\Delta ADP}$. Докажите, что $P$ — середина одной из диагоналей. Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что ∠AKM = ∠CKL. Докажите, что MA = MB. На сторонах AB и BC треугольника ABC выбраны точки K и L соответственно, причём ∠KCB = ∠ LAB = α. Из точки B опущены перпендикуляры BD и BE на прямые AL и CK соответственно. Точка F – середина стороны AC. Найдите углы треугольника DEF. На столе лежит кубик, на его верхней стороне нарисована картинка. Кубик несколько раз перекатывали по столу через ребро, после чего он вновь оказался на прежнем месте. Могло ли оказаться, что картинка повернута а)на 180 градусов по сравнению с исходным положением; б) на 90 градусов?
Сторона треугольника равна 2
Найдите сумму 6+66+666+...+666..6, где в записи последнего числа присутствуют n шестерок. |
Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 7526]
Найдите все пары натуральных чисел (x, y), удовлетворяющие уравнению xy – x + 4y = 15.
Два пловца одновременно прыгнули с плывущего по реке плота и поплыли в разные стороны: первый – по течению, а второй – против течения. Через пять минут они развернулись и вскоре вновь оказались на плоту. Кто из них вернулся раньше? (Каждый из пловцов плывет с постоянной собственной скоростью.)
У деда Мороза в мешке бесконечное число конфет, занумерованных натуральными числами. За минуту до Нового года он начинает дарить детям конфеты. Сначала он дарит детям конфету с номером 1. За полминуты до Нового года он дарит 2 конфеты с номерами 2 и 3, а конфету с номером 1 отбирает, за 15 секунд до Нового года он дарит 4 конфеты с номерами 4, 5, 6, 7, а 2 конфеты с номерами 2 и 3 отбирает, и т.д., за 1/2n долю минуты до Нового года дед Мороз дарит 2n конфет с номерами от 2n до 2n+1-1 и отбирает 2n-1 конфет с номерами от 2n-1 до 2n-1. Сколько конфет будет у деда Мороза и у детей в момент встречи Нового года?
Найдите сумму 6+66+666+...+666..6, где в записи последнего числа присутствуют n шестерок.
10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке