ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции. Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.
Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а
сумма всех чисел из набора равна 100. В треугольнике ABC проведены медианы AM и BP. Известно, что ∠APB = ∠BMA, cos∠ACB = 0,8, BP = 1. Найдите площадь треугольника ABC . Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если: В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.) В треугольнике ABC угол A – прямой, угол B равен
30°. В треугольник вписана окружность радиуса В параллелограмме ABCD на диагонали AC взята точка E, причём AE : EC = 1 : 3, а на стороне AD взята такая точка F, что AF : FD = 1 : 2. Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24. В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания. На окружности радиуса 1 отмечена точка O и из неё циркулем делается засечка вправо радиусом l. Из полученной точки O1 в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться? Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника. Математик с пятью детьми зашёл в пиццерию. Докажите, что через данную точку можно провести единственную плоскость, перпендикулярную данной прямой. Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа? В прямоугольном треугольнике ABC AC = 16, BC = 12. Из центра B радиусом BC описана окружность и к ней проведена касательная, параллельная гипотенузе AB (касательная и треугольник лежат по разные стороны от гипотенузы). Катет BC продолжен до пересечения с проведённой касательной. Определите, на сколько продолжен катет. |
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 6702]
В прямоугольном треугольнике ABC AC = 16, BC = 12. Из центра B радиусом BC описана окружность и к ней проведена касательная, параллельная гипотенузе AB (касательная и треугольник лежат по разные стороны от гипотенузы). Катет BC продолжен до пересечения с проведённой касательной. Определите, на сколько продолжен катет.
Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.
AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а AO = 39.
Площадь ромба ABCD равна 2. В треугольник ABD вписана окружность, которая касается стороны AB в точке K. Через точку K проведена прямая KL, параллельная диагонали AC ромба (точка L лежит на стороне BC). Найдите угол BAD, если известно, что площадь треугольника KLB равна a.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b .
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке