ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём $ \angle$AMO = $ \angle$MAD. Докажите, что точка M равноудалена от точек C и D.

Вниз   Решение


Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?

ВверхВниз   Решение


Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки?

ВверхВниз   Решение


В волейбольном турнире каждые две команды сыграли по одному матчу.
  а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
  б) Постройте пример такого турнира семи команд.
  в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.

ВверхВниз   Решение


Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A.

ВверхВниз   Решение


Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

ВверхВниз   Решение


Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

ВверхВниз   Решение


В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

Вверх   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1956]      



Задача 56852  (#05.019)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Сумма углов при основании трапеции равна  90o. Докажите, что отрезок, соединяющий середины оснований, равен полуразности оснований.
Прислать комментарий     Решение


Задача 56853  (#05.021B)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём $ \angle$AMO = $ \angle$MAD. Докажите, что точка M равноудалена от точек C и D.
Прислать комментарий     Решение


Задача 53392  (#05.020)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

Прислать комментарий     Решение

Задача 56855  (#05.021)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.

Прислать комментарий     Решение

Задача 56856  (#05.022)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 5
Классы: 8

На гипотенузе AB прямоугольного треугольника ABC внешним образом построен квадрат ABPQ. Пусть  $ \alpha$ = $ \angle$ACQ,$ \beta$ = $ \angle$QCP и  $ \gamma$ = $ \angle$PCB. Докажите, что  cos$ \beta$ = cos$ \alpha$cos$ \gamma$.
Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .