ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3. На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно. Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других. Правильный пятиугольник ABCDE со стороной a вписан в
окружность S. Прямые, проходящие через его вершины перпендикулярно
сторонам, образуют правильный пятиугольник со стороной b (см. рис.).
Сторона правильного пятиугольника, описанного около окружности S,
равна c. Докажите, что
a2 + b2 = c2.
Найдите предел Пусть AC – большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что AB·AE + AD·AF = AC². |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1956]
В трапецию ABCD (BC || AD) вписана окружность,
касающаяся боковых сторон AB и CD в точках K и L
соответственно, а оснований AD и BC в точках M и N.
На стороны BC и CD параллелограмма ABCD (или
на их продолжения) опущены перпендикуляры AM и AN.
Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что AB/AE + AD/AF = AC/AG.
Пусть AC – большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что AB·AE + AD·AF = AC².
Углы треугольника ABC связаны соотношением 3α + 2β = 180°. Докажите, что a² + bc = c².
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1956]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке