ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный. Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой. Даны окружность S и точки A и B вне ее. Для
каждой прямой l, проходящей через точку A и пересекающей
окружность S в точках M и N, рассмотрим описанную
окружность треугольника BMN. Докажите, что все эти
окружности имеют общую точку, отличную от точки B.
Докажите неравенство ( Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности. На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC. BB1 и CC1 – высоты треугольника ABC. Касательные к описанной окружности треугольника AB1C1 в точках B1 и C1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB1C1 лежит на прямой Эйлера треугольника ABC. Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц? Вписанная окружность ω треугольника ABC касается сторон BC, AC и AB в точках A0, B0 и C0 соответственно. Биссектрисы углов B и C пересекают серединный перпендикуляр к отрезку AA0 в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на окружности ω. Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC. Встречается ли в треугольнике Паскаля число 1999? Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Во сколько раз сумма чисел, стоящих в сто первой строке треугольника Паскаля, больше суммы чисел, стоящих в сотой строке? Дан параллелограмм ABCD. Вневписанная окружность
треугольника ABD касается продолжений сторон AD и AB в
точках M и N. Докажите, что точки пересечения отрезка MN с BC
и CD лежат на вписанной окружности треугольника BCD.
Через точку P, лежащую на общей хорде AB двух
пересекающихся окружностей, проведены хорда KM первой
окружности и хорда LN второй окружности. Докажите, что
четырехугольник KLMN вписанный.
Проставим знаки плюс и минус в 99-й строке треугольника Паскаля. Между первым и вторым числом – минус, между вторым и третьим – плюс, между третьим и четвёртым – минус, потом опять плюс, и так далее. Найдите значение полученного выражения. В корзине лежат 30 рыжиков и груздей. Среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов имеется хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине? Окружности S1 и S2 пересекаются в точках
A и B. Через точку A проведена касательная AQ к
окружности S1 (точка Q лежит на S2), а через точку B
-- касательная BS к окружности S2 (точка S лежит на
S1). Прямые BQ и AS пересекают окружности S1 и S2 в
точках R и P. Докажите, что PQRS — параллелограмм.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 104]
В окружность вписаны треугольники T1 и T2, причем
вершины треугольника T2 являются серединами дуг, на
которые окружность разбивается вершинами треугольника T1. Докажите,
что в шестиугольнике, являющемся пересечением треугольников T1
и T2, диагонали, соединяющие противоположные вершины, параллельны
сторонам треугольника T1 и пересекаются в одной точке.
Две окружности пересекаются в точках P и Q.
Через точку A первой окружности проведены прямые AP
и AQ, пересекающие вторую окружность в точках B и C.
Докажите, что касательная в точке A к первой окружности
параллельна прямой BC.
Окружности S1 и S2 пересекаются в точках A и P.
Через точку A проведена касательная AB к окружности S1,
а через точку P — прямая CD, параллельная AB (точки B
и C лежат на S2, точка D — на S1). Докажите,
что ABCD — параллелограмм.
Окружности S1 и S2 пересекаются в точках
A и B. Через точку A проведена касательная AQ к
окружности S1 (точка Q лежит на S2), а через точку B
-- касательная BS к окружности S2 (точка S лежит на
S1). Прямые BQ и AS пересекают окружности S1 и S2 в
точках R и P. Докажите, что PQRS — параллелограмм.
Касательная в точке A к описанной окружности
треугольника ABC пересекает прямую BC в точке E; AD — биссектриса треугольника ABC. Докажите, что AE = ED.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 104]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке