ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямые PC и PD касаются окружности с диаметром AB
(C и D — точки касания). Докажите, что прямая,
соединяющая P с точкой пересечения прямых AC и BD,
перпендикулярна AB.
|
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 86]
Четырехугольник ABCD вписан в окружность,
причем касательные в точках B и D пересекаются в точке K,
лежащей на прямой AC.
Даны окружность S и прямая l, не имеющие общих
точек. Из точки P, движущейся по прямой l, проводятся
касательные PA и PB к окружности S. Докажите, что все
хорды AB имеют общую точку.
Окружности S1 и S2 пересекаются в точках A и B,
причем центр O окружности S1 лежит на S2. Прямая,
проходящая через точку O, пересекает отрезок AB в точке P,
а окружность S2 в точке C. Докажите, что точка P лежит
на поляре точки C относительно окружности S1.
Точки C и D лежат на окружности с диаметром AB.
Прямые AC и BD, AD и BC пересекаются в точках P и Q.
Докажите, что
AB
Прямые PC и PD касаются окружности с диаметром AB
(C и D — точки касания). Докажите, что прямая,
соединяющая P с точкой пересечения прямых AC и BD,
перпендикулярна AB.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 86]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке