ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 86]      



Задача 56673  (#03.016)

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.
Прислать комментарий     Решение


Задача 56674  (#03.017)

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Три окружности S1, S2 и S3 попарно касаются друг друга в трех различных точках. Докажите, что прямые, соединяющие точку касания окружностей S1 и S2 с двумя другими точками касания, пересекают окружность S3 в точках, являющихся концами ее диаметра.
Прислать комментарий     Решение


Задача 56675  (#03.018)

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Две касающиеся окружности с центрами O1 и O2 касаются внутренним образом окружности радиуса R с центром O. Найдите периметр треугольника OO1O2.
Прислать комментарий     Решение


Задача 56676  (#03.019)

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.
Прислать комментарий     Решение


Задача 56677  (#03.020)

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Радиусы окружностей S1 и S2, касающихся в точке A, равны R и r (R > r). Найдите длину касательной, проведенной к окружности S2 из точки B окружности S1, если известно, что AB = a. (Разберите случаи внутреннего и внешнего касания.)
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .