ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

Вниз   Решение


Угол величиной  $ \alpha$ = $ \angle$BAC вращается вокруг своей вершины O — середины основания AC равнобедренного треугольника ABC. Стороны этого угла пересекают отрезки AB и BC в точках P и Q. Докажите, что периметр треугольника PBQ остается постоянным.

Вверх   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 1956]      



Задача 56832  (#05.003)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Докажите, что сторона BC треугольника ABC видна из центра O вписанной окружности под углом  90o + $ \angle$A/2, а из центра Oa вневписанной окружности под углом  90o - $ \angle$A/2.
Прислать комментарий     Решение


Задача 56833  (#05.004)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8

Внутри треугольника ABC взята такая точка P, что  $ \angle$PAB : $ \angle$PAC = $ \angle$PCA : $ \angle$PCB = $ \angle$PBC : $ \angle$PBA = x. Докажите, что x = 1.
Прислать комментарий     Решение


Задача 56834  (#05.005)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8

Пусть A1, B1 и C1 — проекции некоторой внутренней точки O треугольника ABC на высоты. Докажите, что если длины отрезков AA1, BB1 и CC1 равны, то они равны 2r.
Прислать комментарий     Решение


Задача 56835  (#05.006)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8

Угол величиной  $ \alpha$ = $ \angle$BAC вращается вокруг своей вершины O — середины основания AC равнобедренного треугольника ABC. Стороны этого угла пересекают отрезки AB и BC в точках P и Q. Докажите, что периметр треугольника PBQ остается постоянным.
Прислать комментарий     Решение


Задача 56836  (#05.007)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8

В неравнобедренном треугольнике ABC через середину M стороны BC и центр O вписанной окружности проведена прямая MO, пересекающая высоту AH в точке E. Докажите, что AE = r.
Прислать комментарий     Решение


Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .