ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что 11551958 + 341958 ≠ n², где n – целое. На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно? Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3. Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности. Найти все действительные решения системы
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3
На круглой поляне радиуса R растут три круглые сосны одинакового диаметра.
Центры их стволов находятся на расстоянии
Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого ab ≡ 1 (mod p). Докажите, что при любом простом p Из чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое. Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ. Дан бумажный треугольник, площадь которого равна ½, а квадраты всех сторон – целые числа. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]
В описанном четырёхугольнике ABCD AB = CD ≠ BC. Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый.
Пусть X – такая точка внутри треугольника ABC, что XA·BC = XB·AC = XC·AB; I1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.
Дан бумажный треугольник, площадь которого равна ½, а квадраты всех сторон – целые числа.
Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O.
В остроугольном треугольнике ABC высоты AA1, BB1 и CC1 пересекаются в точке H. Из точки H провели перпендикуляры к прямым B1C1 и A1C1, которые пересекли лучи CA и CB в точках P и Q соответственно. Докажите, что перпендикуляр, опущенный из точки C на прямую A1B1, проходит через середину отрезка PQ.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке