ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая? Докажите, что
cos2( На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы? Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10? Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k? Пусть f(x) = (x – a)(x – b)(x – c) – многочлен третьей степени с комплексными корнями a, b, c. На сторонах AB и CD четырехугольника ABCD
взяты точки M и N так, что
AM : MB = CN : ND. Отрезки AN
и DM пересекаются в точке K, а отрезки BN и CM — в
точке L. Докажите, что
SKMLN = SADK + SBCL.
Среди своих старых рисунков Катя нашла несколько картинок с разноцветным зонтиком. Катя помнит, что рисовала один и тот же зонтик (вид сверху), только повёрнутый по-разному. К сожалению, от времени краска частично выцвела.
Помогите Кате восстановить, в каком порядке располагались цвета на зонтике, если идти от 1 (розового) по часовой стрелке. Потроить треугольник по высоте к стороне a ha, медиане к стороне a ma и высоте к стороне b hb.
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?
Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?
На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают.
Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что BL = СМ. Докажите, что треугольник LMK – также прямоугольный равнобедренный.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке