ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого c a, число akn+1 – 1 делится на n. Решение |
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 1957]
Найдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого c a, число akn+1 – 1 делится на n.
У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?
Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.
На вписанной окружности треугольника ABC, касающейся стороны AC в точке S, нашлась такая точка Q, что середины отрезков AQ и QC также лежат на вписанной окружности. Докажите, что QS – биссектриса угла AQC.
Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что a1 = b1, a2 : b2 = 2 и
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 1957] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|