ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В красном ящике 100 красных шаров, а в зелёном ящике – 100 зелёных шаров. Восемь красных шаров переложили в зелёный ящик, а потом столько же шаров переложили из зелёного ящика в красный. Шары в ящиках хорошенько перемешали. Что теперь больше: вероятность вытащить наудачу из красного ящика зелёный шар или из зелёного ящика красный? На доске написаны в порядке возрастания два натуральных числа x и y (x ≤ y). Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и y – x, записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке? Периметр треугольника ABC равен 1. Окружность ω касается стороны BC, продолжения стороны AB в точке P и продолжения стороны AC в точке Q. Прямая, проходящая через середины AB и AC, пересекает описанную окружность треугольника APQ в точках X и Y. Найдите длину отрезка XY. Дан многочлен P(x) степени n>5 с целыми коэффициентами, имеющий n различных целых корней. Докажите, что многочлен P(x)+3 имеет n различных действительных корней. Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны. Дано натуральное число n>1. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна n. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше n, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда n — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному. Для произвольного числа x рассмотрим сумму Q(x)=⌊x⌋+⌊x2⌋+⌊x3⌋+⌊x4⌋+…+⌊x10000⌋. Найдите разность Q(2023) – Q(2022). (Здесь \lfloor x\rfloor обозначает целую часть числа x, то есть наибольшее целое число, не превосходящее x.) В выпуклом n-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников? На какое наибольшее число равных невыпуклых многоугольников можно разрезать квадрат так, чтобы все стороны многоугольников были параллельны сторонам квадрата и никакие два из этих многоугольников не получались друг из друга параллельным переносом? Какой наибольший рациональный корень может иметь уравнение вида aх^2 + bx + c = 0, где a, b и c – натуральные числа, не превосходящие 100? От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство? Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп" Даны два взаимно простых числа p, q, больших 1 и различающихся больше, чем на 1. Докажите, что найдётся натуральное n, для которого НОК(p + n, q + n) < НОК(p, q). В одном из сообществ одной социальной сети шло голосование: какой из котят на фото самый симпатичный. К утру голоса распределились так: На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.) На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке? |
Страница: 1 [Всего задач: 5]
На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.
Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке