Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга?

Вниз   Решение


На сторонах AB, BC и CD параллелограмма ABCD взяты точки K, L и M соответственно, делящие эти стороны в одинаковых отношениях. Пусть b, c, d — прямые, проходящие через B, C, D параллельно прямым KL, KM, ML соответственно. Докажите, что прямые b, c, d проходят через одну точку.

ВверхВниз   Решение


a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

ВверхВниз   Решение


Автор: Фольклор

Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?

ВверхВниз   Решение


Таня вырезала из клетчатой бумаги треугольник, изображённый на рисунке. Через некоторое время линии сетки выцвели. Сможет ли Таня их восстановить, не пользуясь никакими инструментами, а только перегибая треугольник? (Длины сторон треугольника Таня помнит.)

ВверхВниз   Решение


Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

ВверхВниз   Решение


Автор: Ионин Ю.И.

Двое играют в следующую игру. Один называет цифру, а другой вставляет её по своему усмотрению вместо одной из звёздочек в следующей разности:

********.

Затем первый называет ещё одну цифру, второй ставит её, первый опять называет цифру, и так играют до тех пор, когда все звёздочки будут заменены цифрами. Первый стремится к тому, чтобы разность получилась как можно больше, а второй — чтобы она стала как можно меньше. Докажите, что

а) второй может расставлять цифры так, чтобы полученная разность стала не больше 4000, независимо от того, какие цифры называл первый;

б) первый может называть цифры так, чтобы разность стала не меньше 4000, независимо от того, куда расставляет цифры второй.

ВверхВниз   Решение


Дан пятиугольник ABCDE. AB = BC = CD = DE, $ \angle$B = $ \angle$D = 90o. Доказать, что пятиугольниками, равными данному, можно замостить плоскость.

ВверхВниз   Решение


У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.

ВверхВниз   Решение


Имеется шахматная доска с обычной раскраской (границы квадратов считаются окрашенными в чёрный цвет).
Начертить на ней окружность наибольшего радиуса, целиком лежащую на чёрном.

ВверхВниз   Решение


Три богатыря сражаются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает половину всех голов и еще одну, Добрыня Никитич — треть всех голов и еще две, а Алёша Попович — четверть всех голов и еще три. Богатыри бьют по одному, в том порядке, в котором считают нужным. Если ни один богатырь не может ударить из-за того, что число голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри отрубить все головы $20^{20}$-головому Змею?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66556  (#1)

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9,10

Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Прислать комментарий     Решение


Задача 66557  (#2)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?
Прислать комментарий     Решение


Задача 66558  (#3)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Индукция (прочее) ]
[ Инварианты ]
Сложность: 3
Классы: 8,9,10

Три богатыря сражаются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает половину всех голов и еще одну, Добрыня Никитич — треть всех голов и еще две, а Алёша Попович — четверть всех голов и еще три. Богатыри бьют по одному, в том порядке, в котором считают нужным. Если ни один богатырь не может ударить из-за того, что число голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри отрубить все головы $20^{20}$-головому Змею?
Прислать комментарий     Решение


Задача 66559  (#4)

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66560  (#5)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 4
Классы: 8,9,10

К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .