ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC ALa, BLb, CLc – биссектрисы, Ka – точка пересечения касательных к описанной окружности в вершинах B и C; Kb, Kc определены аналогично. Докажите, что прямые KaLa, KbLb и KcLc пересекаются в одной точке. Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0. Четырехугольник ABCD описан вокруг окружности радиуса R. Пусть h1 и h2 – высоты опущенные из точки A на стороны BC и CD соответственно. Аналогично h3 и h4 – высоты опущенные из точки C на стороны AB и AD. Докажите, что h1+h2−2Rh1h2=h3+h4−2Rh3h4. Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства: Вычислите суммы:
б) Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон. Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите ∠AMB + ∠ANB + ∠ADB. Докажите, что из равенства P(x) = Q(x)T(x) + R(x) следует соотношение (P(x), Q(x)) = (Q(x), R(x)). Пусть точка P лежит на описанной окружности треугольника ABC. Точка A1 симметрична ортоцентру треугольника PBC относительно серединного перпендикуляра к BC. Точки B1 и C1 определяются аналогично. Докажите, что точки A1, B1 и C1 лежат на одной прямой. Четырехугольник ABCD, вписанный в окружность ω, таков что AD=BD=AC. Точка P движется по ω. Прямые AP и DP пересекают прямые CD и AB в точках E и F соответственно. Прямые BE и CF пересекаются в точке Q. Найдите геометрическое место точек Q. Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи. В треугольнике ABC AH1 и BH2 – высоты; касательная к описанной окружности в точке A пересекает BC в точке S1, а касательная в точке B пересекает AC в точке S2; T1 и T2 – середины отрезков AS1 и BS2. Докажите, что T1T2, AB и H1H2 пересекаются в одной точке. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
В треугольнике ABC AH1 и BH2 – высоты; касательная к описанной окружности в точке A пересекает BC в точке S1, а касательная в точке B пересекает AC в точке S2; T1 и T2 – середины отрезков AS1 и BS2. Докажите, что T1T2, AB и H1H2 пересекаются в одной точке.
Даны три окружности. Первая и вторая пересекаются в точках A0 и A1, вторая и третья – в точках B0 и B1, третья и первая – в точках C0 и C1. Пусть Oi,j,k – центр описанной окружности треугольника AiBjCk. Через все пары точек вида Oi,j,k и O1−i,1−j,1−k провели прямые. Докажите, что эти 4 прямые пересекаются в одной точке или параллельны.
Четырехугольник ABCD без равных и без параллельных сторон описан около окружности с центром I. Точки K, L, M и N – середины сторон AB, BC, CD и DA. Известно, что AB⋅CD=4IK⋅IM. Докажите, что BC⋅AD=4IL⋅IN.
В треугольнике ABC ALa, BLb, CLc – биссектрисы, Ka – точка пересечения касательных к описанной окружности в вершинах B и C; Kb, Kc определены аналогично. Докажите, что прямые KaLa, KbLb и KcLc пересекаются в одной точке.
В треугольнике ABC O – центр описанной окружности, H – ортоцентр, M – середина AB. Прямая MH пересекает прямую, проходящую через O и параллельную AB, в точке K, лежащей на описанной окружности треугольника. Точка P – проекция K на AC. Докажите, что PH∥BC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке