Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

Вниз   Решение



Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата  0 ≤ x ≤ 1,  0 ≤ y ≤ 1  (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.

ВверхВниз   Решение


На плоскости даны две точки A и B. Найдите ГМТ M, для которых AM : BM = k (окружность Аполлония).

ВверхВниз   Решение


Пусть a^b обозначает число ab. В выражении  7^7^7^7^7^7^7  надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?

ВверхВниз   Решение


В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

ВверхВниз   Решение


В ромбе ABCD  ∠А = 120°.  На сторонах BC и CD взяты точки M и N так, что  ∠NAM = 30°.
Докажите, что центр описанной окружности треугольника NAM лежит на диагонали ромба.

ВверхВниз   Решение


Автор: Анджанс А.

Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?

ВверхВниз   Решение


Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?

ВверхВниз   Решение


Дан треугольник ABC. В нём R – радиус описанной окружности, r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что  R/r > a/h.

ВверхВниз   Решение


Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел – это  2·3 = 6,  и 2 – число интересное).
Какое наибольшее количество интересных чисел может идти подряд?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 67043  (#1)

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10,11

Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел – это  2·3 = 6,  и 2 – число интересное).
Какое наибольшее количество интересных чисел может идти подряд?

Прислать комментарий     Решение

Задача 67039  (#2)

Темы:   [ Объем параллелепипеда ]
[ Вычисление объемов ]
Сложность: 3
Классы: 8,9,10,11

Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

Прислать комментарий     Решение

Задача 67045  (#3)

Тема:   [ Шахматные доски и шахматные фигуры ]
Сложность: 4-
Классы: 9,10,11

В белом клетчатом квадрате 2021×2021 требуется закрасить чёрным две клетки. После этого через каждую минуту одновременно закрашиваются чёрным все клетки, которые граничат по стороне хоть с одной из уже закрашенных. Ваня выбрал две начальные клетки так, чтобы весь квадрат закрасился как можно быстрее. Через сколько минут закрасился квадрат?

Прислать комментарий     Решение

Задача 67046  (#4)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 9,10,11

Автор: Матвеев А.

Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$ был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.

Прислать комментарий     Решение

Задача 67047  (#5)

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4-
Классы: 9,10,11

Автор: Лукин М.

Дан отрезок  [0, 1].  За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков.
Докажите, что ни в какой момент сумма чисел на доске не превысит ½.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .