ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фадин М.

Треугольник $ABC$ вписан в окружность $\omega_1$ с центром $O$. Окружность $\omega_2$ касается сторон $AB$, $AC$ и касается дуги $BC$ описанной окружности в точке $K$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что прямая $OI$ содержит симедиану треугольника $AIK$.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67095

Темы:   [ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
[ Вспомогательные подобные треугольники ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9,10,11

Автор: Фадин М.

Треугольник $ABC$ вписан в окружность $\omega_1$ с центром $O$. Окружность $\omega_2$ касается сторон $AB$, $AC$ и касается дуги $BC$ описанной окружности в точке $K$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что прямая $OI$ содержит симедиану треугольника $AIK$.
Прислать комментарий     Решение


Задача 67096

Темы:   [ Правильный (равносторонний) треугольник ]
[ Изогональное сопряжение ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике $ABC$ $\angle A=60^{\circ}$, точка $T$ такова, что $\angle ATB=\angle BTC=\angle ATC$. Окружность, проходящая через точки $B$, $C$ и $T$, повторно пересекает прямые $AB$ и $AC$ в точках $K$ и $L$. Докажите, что точки $K$ и $L$ равноудалены от прямой $AT$.
Прислать комментарий     Решение


Задача 67104

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Решение задач при помощи аффинных преобразований ]
Сложность: 4
Классы: 9,10,11

Автор: Дидин М.

Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $K$ – точка пересечения $BC$ с внешней биссектрисой угла $A$. Прямая $KI$ пересекает внешние биссектрисы углов $B$ и $C$ в точках $X$ и $Y$. Докажите, что $\angle BAX=\angle CAY$.
Прислать комментарий     Решение


Задача 67106

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Четырехугольники (построения) ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 9,10,11

Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.
Прислать комментарий     Решение


Задача 67102

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Изогональное сопряжение ]
[ Теорема Паскаля ]
Сложность: 4+
Классы: 9,10,11

В треугольнике $ABC$ выбрана точка $P$. Лучи с началом в точке $P$, пересекающие под прямым углом стороны $BC$, $AC$, $AB$, пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Оказалось, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке $Q$. Докажите, что все такие прямые $PQ$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .