ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это. Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62]
На карточках написаны все числа от 11111 до 99999 включительно. Затем эти карточки выложили в цепочку в произвольном порядке.
Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это.
В треугольнике ABC через середину M стороны BC и центр O вписанной в этот треугольник окружности проведена прямая MO, которая пересекает высоту AH в точке E. Докажите, что отрезок AE равен радиусу вписанной окружности.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|