ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности длины 15 выбрано n точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что n делится на 10.

   Решение

Задачи

Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1957]      



Задача 78057

Тема:   [ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 11

На плоскости P стоит прямой круговой конус. Радиус основания r, высота — h. На расстоянии H от плоскости и l от высоты конуса находится источник света. Какую часть окружности радиуса R, лежащей в плоскости P и концентрической с окружностью, лежащей в основании конуса, осветит этот источник?
Прислать комментарий     Решение


Задача 78064

Темы:   [ Системы точек ]
[ Итерации ]
Сложность: 3+
Классы: 8,9

Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?
Прислать комментарий     Решение


Задача 78067

Темы:   [ Системы точек ]
[ Итерации ]
Сложность: 3+
Классы: 9

На окружности длины 15 выбрано n точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что n делится на 10.
Прислать комментарий     Решение


Задача 78071

Темы:   [ Высота пирамиды (тетраэдра) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 10,11

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?
Прислать комментарий     Решение


Задача 78074

Темы:   [ Пространственные многоугольники ]
[ Проектирование помогает решить задачу ]
[ Ортогональная проекция (прочее) ]
Сложность: 3+
Классы: 11

Дана замкнутая пространственная ломаная. Некоторая плоскость пересекает все её звенья: A1A2 в точке B1, A2A3 — в точке B2, ..., AnA1 -- в точке Bn. Докажите, что

$\displaystyle {\frac{A_1B_1}{B_1A_2}}$$\displaystyle {\frac{A_2B_2}{B_2A_3}}$...$\displaystyle {\frac{A_nB_n}{B_nA_1}}$ = 1.

Прислать комментарий     Решение

Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .