ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

   Решение

Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1957]      



Задача 78486

Темы:   [ Четность и нечетность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 11

Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

Прислать комментарий     Решение

Задача 78491

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Прислать комментарий     Решение

Задача 78494

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)

Прислать комментарий     Решение

Задача 78501

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Прислать комментарий     Решение

Задача 78515

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

Последовательность a0, a1, a2, ... образована по закону:  a0 = a1 = 1,  an+1 = anan–1 + 1.  Доказать, что число a1964 не делится на 4.

Прислать комментарий     Решение

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .