Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 9,10
|
Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что OC ⊥ MN.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Решить в натуральных числах уравнение x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Доказать, что число
2
21959 – 1 делится на 3.
|
|
|
Сложность: 3+ Классы: 10,11
|
Имеется 1959 положительных чисел
a1,
a2...,
a1959, сумма которых равна 1. Рассматриваются всевозможные комбинации из 1000 чисел, причём комбинации считаются совпадающими, если они отличаются только порядком чисел. Для каждой комбинации рассматривается произведение входящих в неё чисел. Доказать, что сумма всех этих произведений меньше 1.
|
|
|
Сложность: 3+ Классы: 10,11
|
В квадратную таблицу N×N записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем N², отличается от суммы чисел в строке, содержащей 1.
Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 1984]