Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 1984]
В треугольник вписана окружность, и точки касания её со сторонами треугольника
соединены между собой. В полученный таким образом треугольник вписана новая
окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.
Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое
число, начиная с третьего, равно сумме двух предыдущих. В этой
последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна
никакому числу рассматриваемой последовательности.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Разбить число 1957 на 12 целых положительных слагаемых a1, a2, ..., a12 так, чтобы произведение
a1!a2!...a12! было минимально.
Имеется система уравнений
*
x + *y + *z = 0,
*
x + *y + *z = 0,
*
x + *y + *z = 0.
Два человека поочерёдно вписывают вместо звёздочек числа.
Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости даны точки
A и
B. Построить такой квадрат, чтобы точки
A и
B лежали на его границе и сумма расстояний от точки
A до вершин квадрата
была наименьшей.
Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 1984]