ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

   Решение

Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1957]      



Задача 78810

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 9

Имеется 1000 монет, среди них 0, 1 или 2 фальшивые. Известно, что фальшивые монеты имеют одинаковую массу, отличную от массы нефальшивых монет. Можно ли за три взвешивания на чашечных весах без гирь определить, есть ли фальшивые монеты и легче они или тяжелее нормальных? (Количество монет определять не надо.)
Прислать комментарий     Решение


Задача 78812

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный.
Прислать комментарий     Решение


Задача 79238

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Прислать комментарий     Решение


Задача 79268

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

Прислать комментарий     Решение

Задача 79269

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.
Прислать комментарий     Решение


Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .