ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти наименьшее натуральное число, начинающееся с цифры 4 и уменьшающееся в четыре раза от перестановки этой цифры в конец числа.

   Решение

Задачи

Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 1957]      



Задача 79421

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3+
Классы: 11

а) a, b, c — длины сторон треугольника. Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0.
б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c.
Прислать комментарий     Решение


Задача 79427

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 8

Найти наименьшее натуральное число, начинающееся с цифры 4 и уменьшающееся в четыре раза от перестановки этой цифры в конец числа.
Прислать комментарий     Решение


Задача 79431

Темы:   [ Векторы ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 9

На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.
Прислать комментарий     Решение


Задача 79436

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3+
Классы: 10

Три окружности радиусов 3, 4, 5 внешне касаются друг друга. Через точку касания окружностей радиусов 3 и 4 проведена их общая касательная. Найти длину отрезка этой касательной, заключённой внутри окружности радиуса 5.
Прислать комментарий     Решение


Задача 79448

Темы:   [ Теория игр (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8

На шахматной доске 20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах.
Прислать комментарий     Решение


Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .