|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму. Формат входных данных Первая строка N размер доски. Далее следует N строк, каждая из которых содержит N целых чисел, представляющие доску. Формат выходных данных Одно число максимальная сумма. Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт. |
Страница: << 1 2 3 4 [Всего задач: 20]
Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых
делителей.
y(x) = |cos x + α cos 2x + β cos 3x|.
Страница: << 1 2 3 4 [Всего задач: 20] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|