ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну овцу?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 97766  (#1)

Тема:   [ Уравнения в целых числах ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найти все целые решения уравнения  yk = x² + x  (k – натуральное число, большее 1).

Прислать комментарий     Решение

Задача 97767  (#2)

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9,10,11

M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?

Прислать комментарий     Решение

Задача 52470  (#3)

Темы:   [ Площадь четырехугольника ]
[ Медиана делит площадь пополам ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9,10

Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O.
Докажите, что ломаная AOC делит его на две равновеликие части.

Прислать комментарий     Решение

Задача 97769  (#4)

Темы:   [ Двоичная система счисления ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Анджанс А.

64 друга одновременно узнали 64 новости, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями. Каждый разговор длится 1 час. Какое минимальное количество часов необходимо, чтобы все узнали все новости? (Во время одного разговора можно передать сколько угодно новостей.)

Прислать комментарий     Решение

Задача 97770  (#5)

Темы:   [ Теория игр (прочее) ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну овцу?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .