ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) В треугольнике ABC проведены высоты AA1, BB1
и CC1. Прямые AB и A1B1, BC и B1C1, CA и C1A1
пересекаются в точках C', A' и B'. Докажите, что точки A', B'
и C' лежат на радикальной оси окружности девяти
точек и описанной окружности.
Докажите, что диагонали AD, BE и CF описанного
шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Даны окружность S и прямая l, не имеющие общих
точек. Из точки P, движущейся по прямой l, проводятся
касательные PA и PB к окружности S. Докажите, что все
хорды AB имеют общую точку.
Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1. На сторонах BC и AC треугольника ABC взяты
точки A1 и B1; l — прямая, проходящая через общие точки
окружностей с диаметрами AA1 и BB1. Докажите, что:
Докажите, что сумма двух нагелиан больше полупериметра треугольника. Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение x(x – a)(x – b)(x – c) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами. Катеты прямоугольного треугольника равны 12 и 16. Найдите высоту, проведённую из вершины прямого угла. Решите задачу 1.67, используя свойства радикальной оси.
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.
У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?
Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое. Даны две неконцентрические окружности S1 и S2.
Докажите, что множеством центров окружностей, пересекающих
обе эти окружности под прямым углом, является их
радикальная ось, из которой (если данные окружности
пересекаются) выброшена их общая хорда.
Пусть углы Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера: V – E + F = 2. Внутри выпуклого четырехугольника ABCD построены равнобедренные
прямоугольные треугольники ABO1, BCO2, CDO3
и DAO4. Докажите, что если O1 = O3, то O2 = O4.
При каких a многочлен P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ делится на x – 1? В ряд стоят 23 коробочки с шариками, причём для каждого числа n от 1 до 23 есть коробочка, в которой ровно n шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, ..., в 23-й – 23 шарика? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.
Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.
В ряд стоят 23 коробочки с шариками, причём для каждого числа n от 1 до 23 есть коробочка, в которой ровно n шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, ..., в 23-й – 23 шарика?
Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке