ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вдоль правой стороны дороги припарковано 100 машин. Среди них — 30 красных, 20 желтых и 20 розовых мерседесов. Известно, что никакие два мерседеса разного цвета не стоят рядом. Докажите, что тогда какие-то три мерседеса, стоящие подряд — одного цвета. |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1957]
Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 45o. Доказать. (Сравните с задачей 2 для 10 класса.)
Дан произвольный треугольник ABC. Найти множество всех таких точек M, что перпендикуляры к прямым AM, BM, CM, проведённые из точек A, B, C (соответственно), пересекаются в одной точке.
Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)
Доказать, что при нечётном n > 1 уравнение xn + yn = zn не может иметь решений в целых числах, для которых x + y – простое число.
Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение xx + yy = zz + tt.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке