Страница:
<< 143 144 145 146
147 148 149 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Известно, что число n является суммой квадратов трёх натуральных чисел.
Показать, что число n² тоже является суммой квадратов трёх натуральных чисел.
|
|
Сложность: 3+ Классы: 7,8,9
|
Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?
|
|
Сложность: 3+ Классы: 9,10,11
|
При разложении чисел A и B в бесконечные десятичные дроби длины
минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть
равна длина минимального периода числа A + B?
|
|
Сложность: 3+ Классы: 7,8,9
|
В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.
В треугольнике ABC медиана BM равна стороне AC. На
продолжениях сторон BA и AC за точки A и C выбраны
соответственно точки D и E, причём
AD = AB и CE = CM. Докажите, что прямые DM и BE перпендикулярны.
Страница:
<< 143 144 145 146
147 148 149 >> [Всего задач: 1957]