Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 1957]
Диагонали параллелограмма ABCD пересекаются в точке O.
Описанная окружность треугольника AOB касается прямой BC.
Докажите, что описанная окружность треугольника BOC касается прямой CD.
В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых AL = AB и
CN = CB. Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.
Внутри острого угла XOY взяты точки M и N, причём
∠XON = ∠YOM. На луче OX отмечена точка Q так, что ∠NQO = ∠MQX, а на луче OY – точка P так, что ∠NPO = ∠MPY. Докажите, что длины ломаных MPN и MQN равны.
В треугольнике ABC провели биссектрисы углов A и C.
Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.
Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.
Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 1957]