Страница:
<< 146 147 148 149
150 151 152 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 7,8,9
|
В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
Пусть AL – биссектриса треугольника ABC, O – центр
описанной около этого треугольника окружности, D – такая точка
на стороне AC, что AD = AB. Докажите, что прямые AO и LD перпендикулярны.
Числа p и q таковы, что параболы y = – 2x² и y = x² + px + q пересекаются в двух точках, ограничивая некоторую фигуру.
Найдите уравнение вертикальной прямой, делящей площадь этой фигуры пополам.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдите наименьшее натуральное
n, для которого число
nn
не является делителем числа 2008!.
Страница:
<< 146 147 148 149
150 151 152 >> [Всего задач: 1957]