Страница:
<< 148 149 150 151
152 153 154 >> [Всего задач: 1957]
Внутри выпуклого четырёхугольника ABCD взята такая точка P, что ∠PBA = ∠PCD = 90°. Точка M – середина стороны AD, причём BM = CM.
Докажите, что ∠PAB = ∠PDC.
|
|
Сложность: 3+ Классы: 7,8,9
|
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
|
|
Сложность: 3+ Классы: 7,8,9
|
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что PA = PD.
|
|
Сложность: 3+ Классы: 9,10
|
В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что ∠PKA = ∠QKD.
Страница:
<< 148 149 150 151
152 153 154 >> [Всего задач: 1957]