ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1957]      



Задача 116234

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Внутри треугольника ABC взята такая точка O, что  ∠ABO = ∠CAO,  ∠BAO = ∠BCO,  ∠BOC = 90°.  Найдите отношение  AC : OC.

Прислать комментарий     Решение

Задача 116253

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?

Прислать комментарий     Решение

Задача 116254

Темы:   [ Показательные уравнения ]
[ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите такое значение $a > 1$,  при котором уравнение  $a^x = \log_a x$  имеет единственное решение.

Прислать комментарий     Решение

Задача 116426

Темы:   [ Десятичная система счисления ]
[ Треугольник Паскаля и бином Ньютона ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?

Прислать комментарий     Решение

Задача 116674

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 7,8,9

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Прислать комментарий     Решение

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .