ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1957]      



Задача 35756

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса делит дугу пополам ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.
Прислать комментарий     Решение


Задача 56618

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Прислать комментарий     Решение


Задача 66530

Темы:   [ Разложение на множители ]
[ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Прислать комментарий     Решение


Задача 66531

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Попов Л. А.

Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный.
Прислать комментарий     Решение


Задача 66535

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

Король вызвал двух мудрецов и объявил им задание: первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвертое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Прислать комментарий     Решение


Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .