Страница:
<< 150 151 152 153
154 155 156 >> [Всего задач: 1957]
В клетках таблицы n×n стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за n ходов.
Для заданных значений a, b, c и d
оказалось, что графики функций и имеют ровно одну общую точку. Докажите, что графики функций и также имеют ровно одну общую точку.
В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Докажите, что если ∠A ≤ ∠B ≤ ∠C, то AH + BH ≥ 2R.
К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?
На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?
Страница:
<< 150 151 152 153
154 155 156 >> [Всего задач: 1957]