ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 66746

Тема:   [ Симметричная стратегия ]
Сложность: 5
Классы: 8,9,10,11

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Прислать комментарий     Решение


Задача 66747

Темы:   [ Биссектриса делит дугу пополам ]
[ Биссектриса угла (ГМТ) ]
Сложность: 5
Классы: 8,9,10,11

К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

См. также задачу 66754.
Прислать комментарий     Решение


Задача 66754

Тема:   [ Биссектриса угла ]
Сложность: 5
Классы: 8,9,11

К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

См. также задачу 66747.
Прислать комментарий     Решение


Задача 66756

Темы:   [ Площадь и ортогональная проекция ]
[ Тетраэдр (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 8,9,10,11

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
б) А квадрат площади 1/2019?
Прислать комментарий     Решение


Задача 66727

Темы:   [ Деревья ]
[ Ориентированные графы ]
[ Индукция (прочее) ]
[ Теория игр (прочее) ]
Сложность: 6
Классы: 8,9,10,11

Автор: Дидин М.

В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (здесь и далее переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе — простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что

а) в простом государстве Петя может играть так, чтобы не проиграть, как бы ни играл Вася;

б) в сложном государстве Вася может гарантировать себе победу, как бы ни играл Петя.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .