Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 52]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Существует ли число, кратное 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На плоскости даны две параболы: $y = x^2$ и $y = x^2 - 1$. Пусть $U$ – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в $U$?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны целые числа $a_{1}, ..., a_{1000}$. По кругу записаны их квадраты $a_{1}^2, ..., a_{1000}^2$. Сумма каждых 41 подряд идущих квадратов на круге делится на $41^2$.
Верно ли, что каждое из чисел $a_{1}, ..., a_{1000}$ делится на 41?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 52]