Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 52]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы $a(x) + b(x)$, где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
а) ровно одним способом?
б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов.
Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
а) $N$ = 19;
б) $N$ = 20?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Алёша задумал натуральные числа $a, b, c$, а потом решил найти такие натуральные $x, y, z$, что $a$ = НОК($x, y), b$ = НОК($x, z), c$ = НОК($y, z$). Оказалось, что такие $x, y, z$ существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа $a$ и $b$.
Докажите, что Боря может восстановить $c$.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 52]