ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



Задача 66825

Темы:   [ Логика и теория множеств (прочее) ]
[ Четность и нечетность ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9,10,11

Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.
Прислать комментарий     Решение


Задача 66826

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно 4 фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
Прислать комментарий     Решение


Задача 66834

Темы:   [ Многочлены (прочее) ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 4
Классы: 8,9,10,11

Многочлен P(x, y) таков, что для всякого целого $n\geqslant 0$ каждый из многочленов P(n, y) и P(x, n) либо тождественно равен нулю, либо имеет степень не выше n. Может ли многочлен P(x, x) иметь нечётную степень?
Прислать комментарий     Решение


Задача 66835

Темы:   [ Ортоцентр и ортотреугольник ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10,11

Отрезки AA′, BB′ и CC′ с концами на сторонах остроугольного треугольника ABC пересекаются в точке P внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку P. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что P – точка пересечения высот треугольника ABC.
Прислать комментарий     Решение


Задача 66844

Темы:   [ Многочлены (прочее) ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.

Целое число n таково, что уравнение $x^2+y^2+z^2-xy-yz-zx=n$ имеет решение в целых числах. Докажите, что тогда и уравнение $x^2+y^2-xy=n$ имеет решение в целых числах.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .