ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]      



Задача 66848

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

По кругу стоят буквы A и B, всего 41 буква. Можно заменять ABA на B и наоборот, а также BAB на A и наоборот. Верно ли, что из любого начального расположения можно получить такими операциями круг, на котором стоит ровно одна буква?
Прислать комментарий     Решение


Задача 66849

Тема:   [ Многочлены (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Существует ли непостоянный многочлен p(x) с действительными коэффициентами, который можно представить в виде суммы a(x)+b(x), где a(x) и b(x) – квадраты многочленов с действительными коэффициентами,
а) ровно одним способом?
б) ровно двумя способами?

Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.
Прислать комментарий     Решение


Задача 66850

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

Даны две окружности, пересекающиеся в точках P и Q. Произвольная прямая l, проходящая через Q, повторно пересекает окружности в точках A и B. Прямые, касающиеся окружностей в точках A и B, пересекаются в точке C, а биссектриса угла CPQ пересекает прямую AB в точке D. Докажите, что все точки D, которые можно так получить, выбирая по-разному прямую l, лежат на одной и той же окружности.
Прислать комментарий     Решение


Задача 66852

Тема:   [ Процессы и операции ]
Сложность: 4
Классы: 8,9,10,11

Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов. Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?
Прислать комментарий     Решение


Задача 66853

Темы:   [ Вписанные и описанные многоугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9,10,11

Существует ли вписанный в окружность N-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
а) N=19;
б) N=20?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .