ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 66856

Темы:   [ Теория игр (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Теория графов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает 1 очко. Какое наибольшее количество очков он может гарантированно заработать?
Прислать комментарий     Решение


Задача 66860

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Может ли в сечении какого-то тетраэдра двумя разными плоскостями получиться два квадрата: один – со стороной, не большей 1, а другой – со стороной, не меньшей 100?
Прислать комментарий     Решение


Задача 66861

Тема:   [ Комбинаторика (прочее) ]
Сложность: 5
Классы: 8,9,10,11

К Ивану на день рождения пришли 2N гостей. У Ивана есть N чёрных и N белых цилиндров. Он хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или несколько) так, чтобы в каждом хороводе было хотя бы два человека и люди в цилиндрах одного цвета не стояли в хороводе рядом. Докажите, что Иван может устроить бал ровно (2N)! различными способами. (Цилиндры одного цвета неразличимы; все гости различимы.)
Прислать комментарий     Решение


Задача 66862

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Радикальная ось ]
Сложность: 5
Классы: 8,9,10,11

Автор: Дидин М.

Дан вписанный четырёхугольник ABCD. Окружности с диаметрами AB и CD пересекаются в двух точках $X_{1}$ и $Y_{1}$. Окружности с диаметрами ВС и АD пересекаются в двух точках $X_{2}$ и $Y_{2}$. Окружности с диаметрами AС и ВD пересекаются в двух точках $X_{3}$ и $Y_{3}$. Докажите, что прямые $X_{1} Y_{1}, X_{2} Y_{2}, X_{3} Y_{3}$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66833

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 6
Классы: 8,9,10,11

В клетчатом деревянном квадрате 102 клетки намазаны чёрной краской. Петя, используя квадрат как печать, 100 раз приложил его к белому листу, и каждый раз эти 102 клетки (и только они) оставляли чёрный отпечаток на бумаге. Мог ли в итоге на листе получиться квадрат $101\times 101$, все клетки которого, кроме одной угловой, чёрные?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .