ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 [Всего задач: 52]      



Задача 66863

Темы:   [ Индукция (прочее) ]
[ Полуинварианты ]
Сложность: 6
Классы: 8,9,10,11

На доске написаны 2n последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2n последовательных чисел.
Прислать комментарий     Решение


Задача 66864

Тема:   [ Раскраски ]
Сложность: 6
Классы: 8,9,10,11

Для каких k можно закрасить на белой клетчатой плоскости несколько (конечное число, большее нуля) клеток в чёрный цвет так, чтобы на любой клетчатой вертикали, горизонтали и диагонали либо было ровно k чёрных клеток, либо вовсе не было чёрных клеток?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .