ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Таня сделала кошелёк из двух клетчатых кусочков ткани $8\times10$, наложив их друг на друга и сшив друг с другом края обеих пар коротких сторон и нижних длинных сторон (см. рисунок, слева сплющенный кошелёк, справа приоткрытый).
Хулиган Вася сделал прямолинейный надрез на переднем слое ткани от одного узла сетки до другого. Но Таня не расстроилась, потому что смогла сложить из надрезанного кошелька кулёк (в сплющенном виде это двуслойный треугольник, не обязательно равнобедренный, нескреплённые стороны совпадают — пример кулька в сплющенном и в приоткытом виде см. на рисунке ниже).
Отметьте на рисунке-кошельке два узла сетки, между которыми мог провести надрез Вася. Что больше: 1234567/7654321 или 1234568/7654322? |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]
В четырёхугольнике ABCD стороны AB, BC и CD равны,
M – середина стороны AD. Известно, что ∠BMC = 90°.
В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1, CC1 и отмечены точки A2, B2, C2, в которых вневписанные окружности касаются сторон BC, CA, AB соответственно. Прямая B1C1 касается вписанной окружности треугольника. Докажите, что точка A1 лежит на описанной окружности треугольника A2B2C2.
Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC.
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке